Inductance et Capacité.
Inductance et Capacité.
Comment se définit la constante de temps dans un circuit RL?
L'inductance est cette propriété qui s'oppose aux variations de courant. La constante de temps représente le temps que mettrait le courant à atteindre sa valeur finale SI le taux initial de changement pouvait être maintenu (en réalité, le taux de changement ralentit avec le temps). La constante de temps en secondes équivaut à L en henrys divisé par R en ohms: plus la résistance est faible, plus important est le taux de changement du courant et l'opposition qui en résulte. Le courant après 1, 2 et 5 constantes est respectivement de 63%, 87% et 100% de la valeur finale. Dans un circuit Résistance-Condensateur, les ratios sont les mêmes, mais se rapportent au voltage; la constante de temps devient R en ohms multiplié par C en farads.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quel terme décrit le temps que prend un condensateur dans un circuit RC pour se charger à 63,2 % de la tension appliquée?
La capacité se manifeste par une opposition aux variations de voltage. La constante de temps représente le temps que mettrait le voltage à atteindre sa valeur finale SI le taux de changement initial pouvait être maintenu ( dans les faits, le taux de changement ralentit avec le temps ). La constante de temps en secondes équivaut à R en ohms multiplié par C en farads: plus la résistance est élevée, plus le temps est long. Le voltage après 1, 2 et 5 constantes de temps est respectivement de 63%, 87% et 100% de la valeur finale. Avec un circuit Résistance-Bobine, les ratios sont les mêmes, mais se rapportent au courant; la constante de temps devient L en henrys divisé par R.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quel terme décrit le temps que prend le courant, dans un circuit RL, pour atteindre 63,2% de sa valeur maximale?
L'inductance est cette propriété qui s'oppose aux variations de courant. La constante de temps représente le temps que mettrait le courant à atteindre sa valeur finale SI le taux initial de changement pouvait être maintenu (en réalité, le taux de changement ralentit avec le temps). La constante de temps en secondes équivaut à L en henrys divisé par R en ohms: plus la résistance est faible, plus important est le taux de changement du courant et l'opposition qui en résulte. Le courant après 1, 2 et 5 constantes est respectivement de 63%, 87% et 100% de la valeur finale. Dans un circuit Résistance-Condensateur, les ratios sont les mêmes, mais se rapportent au voltage; la constante de temps devient R en ohms multiplié par C en farads.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quel terme est employé pour décrire le temps que prend un condensateur chargé, dans un circuit RC, à se décharger jusqu'à 36,8 % de sa charge initiale?
Mot clé: DÉCHARGE. La constante de temps représente le temps que mettrait le voltage à atteindre sa valeur finale SI le taux de changement initial pouvait être maintenu. La constante de temps en secondes équivaut à R en ohms multiplié par C en farads: plus la résistance est élevée, plus le temps est long. Le voltage après 1, 2 et 5 constantes de temps est respectivement de 63%, 87% et 100% de la valeur finale. Avec la décharge, on tend vers zéro, il ne restera que 37% ( 100 moins 63 ) et 13% ( 100 moins 87) respectivement après une et deux constantes de temps.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Comment se définit la force contre-électromotrice (f.c.é.m.)?
La force contre-électromotrice est ce voltage contraire induit dans la bobine par la variation de courant. C'est précisément la force qui s'oppose aux variations de courant.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Au moment de la charge, quel pourcentage de la tension appliquée le condensateur d'un circuit RC atteint-il après deux constantes de temps?
La capacité se manifeste par une opposition aux variations de voltage. La constante de temps représente le temps que mettrait le voltage à atteindre sa valeur finale SI le taux de changement initial pouvait être maintenu ( dans les faits, le taux de changement ralentit avec le temps ). La constante de temps en secondes équivaut à R en ohms multiplié par C en farads: plus la résistance est élevée, plus le temps est long. Le voltage après 1, 2 et 5 constantes de temps est respectivement de 63%, 87% et 100% de la valeur finale. Avec un circuit Résistance-Bobine, les ratios sont les mêmes, mais se rapportent au courant; la constante de temps devient L en henrys divisé par R.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Au moment de la décharge, à quel pourcentage de la tension initiale le condensateur d'un circuit RC sera-t-il rendu après deux constantes de temps?
Mot clé: DÉCHARGE. La constante de temps représente le temps que mettrait le voltage à atteindre sa valeur finale SI le taux de changement initial pouvait être maintenu. La constante de temps en secondes équivaut à R en ohms multiplié par C en farads: plus la résistance est élevée, plus le temps est long. Le voltage après 1, 2 et 5 constantes de temps est respectivement de 63%, 87% et 100% de la valeur finale. Avec la décharge, on tend vers zéro, il ne restera que 37% ( 100 moins 63 ) et 13% ( 100 moins 87) respectivement après une et deux constantes de temps.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quelle est la constante de temps d'un circuit dont le condensateur, d'une valeur de 100 microfarads, est en série avec une résistance de 470 kilohms?
La constante de temps en secondes équivaut à R en ohms multiplié par C en farads: plus la résistance est élevée, plus le temps est long. En multipliant des mégohms avec des microfarads, les préfixes s'annulent. 100 microfarads multipliés par 0,47 mégohm = 100 multiplié par 0,47 = 47 secondes.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quelle est la constante de temps d'un circuit dont le condensateur, d'une valeur de 470 microfarads, est en série avec une résistance de 470 kilohms?
La constante de temps en secondes équivaut à R en ohms multiplié par C en farads: plus la résistance est élevée, plus le temps est long. En multipliant des mégohms avec des microfarads, les préfixes s'annulent. 470 microfarads multipliés par 0,47 mégohm = 470 multiplié par 0,47 = 221 secondes.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quelle est la constante de temps d'un circuit dont le condensateur, d'une valeur de 220 microfarads, est en série avec une résistance de 470 kilohms?
La constante de temps en secondes équivaut à R en ohms multiplié par C en farads: plus la résistance est élevée, plus le temps est long. En multipliant des mégohms avec des microfarads, les préfixes s'annulent. 220 microfarads multipliés par 0,47 mégohm = 220 multiplié par 0,47 = 103 secondes.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quel est le résultat de l'effet pelliculaire ("skin effect")?
À mesure que la fréquence augmente, le courant RF (radiofréquence) tend à ne circuler que dans une couche de plus en plus mince à la surface des conducteurs. Ce phénomène se nomme effet pelliculaire (en anglais, "skin effect").
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Comment s'appelle l'effet produit lorsque le courant RF circule près de la surface du conducteur?
À mesure que la fréquence augmente, le courant RF (radiofréquence) tend à ne circuler que dans une couche de plus en plus mince à la surface des conducteurs. Ce phénomène se nomme effet pelliculaire (en anglais, "skin effect").
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Où circule la majeure partie du courant RF dans un conducteur?
À mesure que la fréquence augmente, le courant RF (radiofréquence) tend à ne circuler que dans une couche de plus en plus mince à la surface des conducteurs. Ce phénomène se nomme effet pelliculaire (en anglais, "skin effect").
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Pourquoi la majeure partie du courant RF circule-t-elle dans une mince couche à la surface du conducteur?
À mesure que la fréquence augmente, le courant RF (radiofréquence) tend à ne circuler que dans une couche de plus en plus mince à la surface des conducteurs. Ce phénomène se nomme effet pelliculaire (en anglais, "skin effect").
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Pourquoi la résistance d'un conducteur diffère-t-elle lorsqu'il s'agit de courant RF au lieu de courant continu?
À mesure que la fréquence augmente, le courant RF (radiofréquence) tend à ne circuler que dans une couche de plus en plus mince à la surface des conducteurs. Ce phénomène se nomme effet pelliculaire (en anglais, "skin effect").
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quelle unité mesure l'aptitude d'un condensateur à emmagasiner une charge électrique?
Les condensateurs emmagasinent l'énergie dans un champ électrostatique. La capacité en farads est l'un des facteurs qui déterminent la quantité d'énergie qui peut être stockée. Le coulomb est une quantité d'électrons ( le nombre 6 multiplié par 10 exposant 18 ). Un farad accepte une charge de un coulomb sous une tension de un volt. Le watt correspond à du travail par unité de temps, soit un joule par seconde. Le volt est la force qui pousse un coulomb d'électricité avec un joule d'énergie.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Un courant circule dans un fil conducteur. Que trouve-t-on autour de ce fil?
Un champ électromagnétique est le champ magnétique créé autour d'un conducteur où circule un courant. Un champ magnétique est l'espace près d'un aimant ou d'un conducteur où une force magnétique existe. Un champ magnétique est composé de lignes de force magnétique. Un champ électrostatique est le champ électrique qui apparaît entre des objets portant des charges électriques différentes. Un champ électrique est un espace où une charge électrique exerce une force (attraction ou répulsion) sur d’autres charges.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Dans quelle direction est orienté le champ magnétique autour d'un conducteur par rapport à la direction de la circulation des électrons?
La 'Règle de la Main Gauche': imaginez la main gauche avec le pouce pointant dans la direction du flux d'électrons, encerclez le conducteur avec les autres doigts, les doigts pointent dans la direction des lignes de force magnétique. [ Si on utilise le sens du courant conventionnel, il faudra utiliser la Règle de la Main Droite. ]
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Comment appelle-t-on l'énergie emmagasinée dans un champ électromagnétique ou électrostatique?
Mot clé: EMMAGASINÉE. Potentielle: "Qui existe en puissance (opposé à actuel) (Petit Robert)". Cinétique: "Qui a le mouvement comme principe (Petit Robert)".
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Que trouve-t-on entre les plaques d'un condensateur?
Le voltage aux bornes d'un condensateur créé un champ électrostatique entre les plaques. Un champ électrostatique est le champ électrique qui apparaît entre des objets portant des charges électriques différentes. Un champ électrique est un espace où une charge électrique exerce une force (attraction ou répulsion) sur d’autres charges.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Une bobine, où circule un courant, emmagasine de l'énergie. La quantité d'énergie est influencée par le courant, mais aussi par une propriété de la bobine. Quelle unité caractérise cette propriété?
Les bobines emmagasinent l'énergie dans un champ magnétique. L'inductance en henrys est un des facteurs qui déterminent la quantité d'énergie emmagasinée dans ce champ magnétique. Un henry produit une force contre-électromotrice de un volt si le courant varie au taux de un ampère par seconde. Le coulomb est une quantité d'électrons ( le nombre 6 multiplié par 10 exposant 18 ). Un farad accepte une charge de un coulomb sous une tension de un volt. Le watt correspond à du travail par unité de temps, soit un joule par seconde.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quelle est la fréquence de résonance d'un circuit RLC en série si R = 47 ohms, L = 50 microhenrys et C = 40 picofarads?
La fréquence de résonance équivaut à l'inverse du produit du nombre 2 par 3,14 par la racine carrée de la multiplication de L et C. Pour une fréquence en mégahertz, on peut diviser 1000 par le produit du nombre 2 par 3,14 par la racine carrée de microhenrys fois picofarads. 50 fois 40 égale 2000 ; la racine carrée de 2000 égale 44,7 ; 44,7 fois 2 fois 3,14 égale 280,7 ; 1000 divisé par 280,7 égale 3,56 MHz.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quelle est la fréquence de résonance d'un circuit RLC en série si R = 47 ohms, L = 40 microhenrys et C = 200 picofarads?
La fréquence de résonance équivaut à l'inverse du produit du nombre 2 par 3,14 par la racine carrée de la multiplication de L et C. Pour une fréquence en mégahertz, on peut diviser 1000 par le produit du nombre 2 par 3,14 par la racine carrée de microhenrys fois picofarads. 40 fois 200 égale 8000 ; la racine carrée de 8000 égale 89,4 ; 89,4 fois 2 fois 3,14 égale 561,4 ; 1000 divisé par 561,4 égale 1,78 MHz.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quelle est la fréquence de résonance d'un circuit RLC en série si R = 47 ohms, L = 50 microhenrys et C = 10 picofarads?
La fréquence de résonance équivaut à l'inverse du produit du nombre 2 par 3,14 par la racine carrée de la multiplication de L et C. Pour une fréquence en mégahertz, on peut diviser 1000 par le produit du nombre 2 par 3,14 par la racine carrée de microhenrys fois picofarads. 50 fois 10 égale 500 ; la racine carrée de 500 égale 22,4 ; 22,4 fois 2 fois 3,14 égale 140,7 ; 1000 divisé par 140,7 égale 7,11 MHz.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quelle est la fréquence de résonance d'un circuit RLC en série si R = 47 ohms, L = 25 microhenrys et C = 10 picofarads?
La fréquence de résonance équivaut à l'inverse du produit du nombre 2 par 3,14 par la racine carrée de la multiplication de L et C. Pour une fréquence en mégahertz, on peut diviser 1000 par le produit du nombre 2 par 3,14 par la racine carrée de microhenrys fois picofarads. 25 fois 10 égale 250 ; la racine carrée de 250 égale 15,8 ; 15,8 fois 2 fois 3,14 égale 99,2 ; 1000 divisé par 99,2 égale 10,08 MHz.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quelle est la fréquence de résonance d'un circuit RLC en série si R = 47 ohms, L = 3 microhenrys et C = 40 picofarads?
La fréquence de résonance équivaut à l'inverse du produit du nombre 2 par 3,14 par la racine carrée de la multiplication de L et C. Pour une fréquence en mégahertz, on peut diviser 1000 par le produit du nombre 2 par 3,14 par la racine carrée de microhenrys fois picofarads. 3 fois 40 égale 120 ; la racine carrée de 120 égale 11 ; 11 fois 2 fois 3,14 égale 69,1 ; 1000 divisé par 69,1 égale 14,47 MHz.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quelle est la fréquence de résonance d'un circuit RLC en série si R = 47 ohms, L = 4 microhenrys et C= 20 picofarads?
La fréquence de résonance équivaut à l'inverse du produit du nombre 2 par 3,14 par la racine carrée de la multiplication de L et C. Pour une fréquence en mégahertz, on peut diviser 1000 par le produit du nombre 2 par 3,14 par la racine carrée de microhenrys fois picofarads. 4 fois 20 égale 80 ; la racine carrée de 80 égale 8,9 ; 8,9 fois 2 fois 3,14 égale 55,9 ; 1000 divisé par 55,9 égale 17,89 MHz.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quelle est la fréquence de résonance d'un circuit RLC en série si R = 47 ohms, L = 8 microhenrys et C = 7 picofarads?
La fréquence de résonance équivaut à l'inverse du produit du nombre 2 par 3,14 par la racine carrée de la multiplication de L et C. Pour une fréquence en mégahertz, on peut diviser 1000 par le produit du nombre 2 par 3,14 par la racine carrée de microhenrys fois picofarads. 8 fois 7 égale 56 ; la racine carrée de 56 égale 7,5 ; 7,5 fois 2 fois 3,14 égale 47,1 ; 1000 divisé par 47,1 égale 21,23 MHz.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quelle est la fréquence de résonance d'un circuit RLC en série si R = 47 ohms, L = 3 microhenrys et C = 15 picofarads?
La fréquence de résonance équivaut à l'inverse du produit du nombre 2 par 3,14 par la racine carrée de la multiplication de L et C. Pour une fréquence en mégahertz, on peut diviser 1000 par le produit du nombre 2 par 3,14 par la racine carrée de microhenrys fois picofarads. 3 fois 15 égale 45 ; la racine carrée de 45 égale 6,7 ; 6,7 fois 2 fois 3,14 égale 42,1 ; 1000 divisé par 42,1 égale 23,75 MHz.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quelle est la fréquence de résonance d'un circuit RLC en série si R = 47 ohms, L = 4 microhenrys et C = 8 picofarads?
La fréquence de résonance équivaut à l'inverse du produit du nombre 2 par 3,14 par la racine carrée de la multiplication de L et C. Pour une fréquence en mégahertz, on peut diviser 1000 par le produit du nombre 2 par 3,14 par la racine carrée de microhenrys fois picofarads. 4 fois 8 égale 32 ; la racine carrée de 32 égale 5,7 ; 5,7 fois 2 fois 3,14 égale 35,8 ; 1000 divisé par 35,8 égale 27,93 MHz.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quelle est la fréquence de résonance d'un circuit RLC en série si R = 47 ohms, L = 1 microhenry et C = 9 picofarads?
La fréquence de résonance équivaut à l'inverse du produit du nombre 2 par 3,14 par la racine carrée de la multiplication de L et C. Pour une fréquence en mégahertz, on peut diviser 1000 par le produit du nombre 2 par 3,14 par la racine carrée de microhenrys fois picofarads. 1 fois 9 égale 9 ; la racine carrée de 9 égale 3 ; 3 fois 2 fois 3,14 égale 18,8 ; 1000 divisé par 18,8 égale 53,19 MHz.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quel est la valeur de la capacité (C) dans un circuit RLC en série si la fréquence de résonance du circuit est 14,25 MHz et L = 2,84 microhenrys?
Méthode A: les réactances sont égales à la résonance. La réactance inductive égale 2 fois 3,14 fois 14,25 fois 2,84, soit 254,2 ohms. Pour des mégahertz et des picofarads, la réactance capacitive devient le nombre 1 000 000 divisé par 2 fois 3,14 fois mégahertz fois picofarads. En substituant réactance capacitive et capacité, la valeur de C devient un million divisé par 2 fois 3,14 fois mégahertz fois réactance en ohms; 2 fois 3,14 fois 14,25 fois 254,2 = 22 748 ; un million divisé par 22 748 = 43,96 picofarads. Méthode B: à 14 MHz, la capacité doit être en picofarads. Testez les réponses en picofarads en divisant 1000 par le produit du nombre 2 par 3,14 par la racine carrée de microhenrys fois picofarads.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quelle est la fréquence de résonance d'un circuit RLC parallèle si R = 4,7 kilohms, L = 1 microhenry et C = 10 picofarads?
La fréquence de résonance équivaut à l'inverse du produit du nombre 2 par 3,14 par la racine carrée de la multiplication de L et C. Pour une fréquence en mégahertz, on peut diviser 1000 par le produit du nombre 2 par 3,14 par la racine carrée de microhenrys fois picofarads. 1 fois 10 égale 10 ; la racine carrée de 10 égale 3,2 ; 3,2 fois 2 fois 3,14 égale 20,1 ; 1000 divisé par 20,1 égale 49,75 MHz.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quelle est la fréquence de résonance d'un circuit RLC parallèle si R = 4,7 kilohms, L = 2 microhenrys et C = 15 picofarads?
La fréquence de résonance équivaut à l'inverse du produit du nombre 2 par 3,14 par la racine carrée de la multiplication de L et C. Pour une fréquence en mégahertz, on peut diviser 1000 par le produit du nombre 2 par 3,14 par la racine carrée de microhenrys fois picofarads. 2 fois 15 égale 30 ; la racine carrée de 30 égale 5,5 ; 5,5 fois 2 fois 3,14 égale 34,5 ; 1000 divisé par 34,5 égale 28,99 MHz.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quelle est la fréquence de résonance d'un circuit RLC parallèle si R = 4,7 kilohms, L = 5 microhenrys et C = 9 picofarads?
La fréquence de résonance équivaut à l'inverse du produit du nombre 2 par 3,14 par la racine carrée de la multiplication de L et C. Pour une fréquence en mégahertz, on peut diviser 1000 par le produit du nombre 2 par 3,14 par la racine carrée de microhenrys fois picofarads. 5 fois 9 égale 45 ; la racine carrée de 45 égale 6,7 ; 6,7 fois 2 fois 3,14 égale 42,1 ; 1000 divisé par 42,1 égale 23,75 MHz.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quelle est la fréquence de résonance d'un circuit RLC parallèle si R = 4,7 kilohms, L = 2 microhenrys et C = 30 picofarads?
La fréquence de résonance équivaut à l'inverse du produit du nombre 2 par 3,14 par la racine carrée de la multiplication de L et C. Pour une fréquence en mégahertz, on peut diviser 1000 par le produit du nombre 2 par 3,14 par la racine carrée de microhenrys fois picofarads. 2 fois 30 égale 60 ; la racine carrée de 60 égale 7,7 ; 7,7 fois 2 fois 3,14 égale 48,4 ; 1000 divisé par 48,4 égale 20,66 MHz.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quelle est la fréquence de résonance d'un circuit RLC parallèle si R = 4,7 kilohms, L = 15 microhenrys et C = 5 picofarads?
La fréquence de résonance équivaut à l'inverse du produit du nombre 2 par 3,14 par la racine carrée de la multiplication de L et C. Pour une fréquence en mégahertz, on peut diviser 1000 par le produit du nombre 2 par 3,14 par la racine carrée de microhenrys fois picofarads. 15 fois 5 égale 75 ; la racine carrée de 75 égale 8,7 ; 8,7 fois 2 fois 3,14 égale 54,6 ; 1000 divisé par 54,6 égale 18,32 MHz.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quelle est la fréquence de résonance d'un circuit RLC parallèle si R = 4,7 kilohms, L = 3 microhenrys et C = 40 picofarads?
La fréquence de résonance équivaut à l'inverse du produit du nombre 2 par 3,14 par la racine carrée de la multiplication de L et C. Pour une fréquence en mégahertz, on peut diviser 1000 par le produit du nombre 2 par 3,14 par la racine carrée de microhenrys fois picofarads. 3 fois 40 égale 120 ; la racine carrée de 120 égale 11 ; 11 fois 2 fois 3,14 égale 69,1 ; 1000 divisé par 69,1 égale 14,47 MHz.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quelle est la fréquence de résonance d'un circuit RLC parallèle si R = 4,7 kilohms, L = 40 microhenrys et C = 6 picofarads?
La fréquence de résonance équivaut à l'inverse du produit du nombre 2 par 3,14 par la racine carrée de la multiplication de L et C. Pour une fréquence en mégahertz, on peut diviser 1000 par le produit du nombre 2 par 3,14 par la racine carrée de microhenrys fois picofarads. 40 fois 6 égale 240 ; la racine carrée de 240 égale 15,5 ; 15,5 fois 2 fois 3,14 égale 97,3 ; 1000 divisé par 97,3 égale 10.28 MHz.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quelle est la fréquence de résonance d'un circuit RLC parallèle si R = 4,7 kilohms, L = 10 microhenrys et C = 50 picofarads?
La fréquence de résonance équivaut à l'inverse du produit du nombre 2 par 3,14 par la racine carrée de la multiplication de L et C. Pour une fréquence en mégahertz, on peut diviser 1000 par le produit du nombre 2 par 3,14 par la racine carrée de microhenrys fois picofarads. 10 fois 50 égale 500 ; la racine carrée de 500 égale 22,4 ; 22,4 fois 2 fois 3,14 égale 140,7 ; 1000 divisé par 140,7 égale 7,11 MHz.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quelle est la fréquence de résonance d'un circuit RLC parallèle si R = 4,7 kilohms, L = 200 microhenrys et C = 10 picofarads?
La fréquence de résonance équivaut à l'inverse du produit du nombre 2 par 3,14 par la racine carrée de la multiplication de L et C. Pour une fréquence en mégahertz, on peut diviser 1000 par le produit du nombre 2 par 3,14 par la racine carrée de microhenrys fois picofarads. 200 fois 10 égale 2000 ; la racine carrée de 2000 égale 44,7 ; 44,7 fois 2 fois 3,14 égale 280,7 ; 1000 divisé par 280,7 égale 3,56 MHz.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quelle est la fréquence de résonance d'un circuit RLC parallèle si R = 4,7 kilohms, L = 90 microhenrys et C = 100 picofarads?
La fréquence de résonance équivaut à l'inverse du produit du nombre 2 par 3,14 par la racine carrée de la multiplication de L et C. Pour une fréquence en mégahertz, on peut diviser 1000 par le produit du nombre 2 par 3,14 par la racine carrée de microhenrys fois picofarads. 90 fois 100 égale 9000 ; la racine carrée de 9000 égale 94,9 ; 94,9 fois 2 fois 3,14 égale 596 ; 1000 divisé par 596 égale 1,68 MHz.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quelle est la valeur de l'inductance (L) dans un circuit RLC parallèle, si la fréquence de résonance est 14,25 MHz et C = 44 picofarads?
Méthode A: les réactances sont égales à la résonance. La réactance capacitive égale l'inverse du produit 2 Pi f C. Pour des mégahertz et des picofarads, la réactance capacitive devient le nombre 1 000 000 divisé par 2 Pi fois mégahertz fois picofarads. Dans ce cas-ci, un million divisé par 2 fois 3,14 fois 14,25 fois 44 égale 254 ohms. Comme la réactance inductive égale 2 Pi f L, L devient réactance divisée par 2 Pi f ; 254 divisé par 2 fois 3,14 fois 14,25 = 2,8 microhenrys. Méthode B: à 14 MHz, la bobine doit être en microhenrys. Testez les deux réponses en microhenrys en divisant 1000 par le produit du nombre 2 par 3,14 par la racine carrée de microhenrys fois picofarads.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quel est le facteur de qualité (Q) d'un circuit RLC parallèle quand la résonance = 14,128 MHz, L= 2,7 microhenrys et R = 18 kilohms?
Réactance inductive = 2 Pi f L = 2 fois 3,14 fois 14,128 fois 2,7 = 240 ( les préfixes méga et micro s'annulent mutuellement ). Q = 18 000 divisé par 240 = 75. Dans un circuit PARALLÈLE avec amortissement par résistance parallèle, le Facteur de Qualité égale résistance divisée par réactance: plus la résistance est élevée, moindre est l'effet sur la courbe de réponse. La résistance en parallèle réduit le Q du circuit résonant parallèle. Une résistance d'amortissement (en anglais, "damping resistor") peut servir à augmenter la bande passante.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quel est le facteur de qualité (Q) d'un circuit RLC parallèle quand la résonance = 14,128 MHz, L = 4,7 microhenrys et R = 18 kilohms?
Réactance inductive = 2 Pi f L = 2 fois 3,14 fois 14,128 fois 4,7 = 417 ( les préfixes méga et micro s'annulent mutuellement ). Q = 18 000 divisé par 417 = 43. Dans un circuit PARALLÈLE avec amortissement par résistance parallèle, le Facteur de Qualité égale résistance divisée par réactance: plus la résistance est élevée, moindre est l'effet sur la courbe de réponse. La résistance en parallèle réduit le Q du circuit résonant parallèle. Une résistance d'amortissement (en anglais, "damping resistor") peut servir à augmenter la bande passante.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quel est le facteur de qualité (Q) d'un circuit RLC parallèle quand la résonance = 4,468 MHz, L = 47 microhenrys et R = 180 ohms?
Réactance inductive = 2 Pi f L = 2 fois 3,14 fois 4,468 fois 47 = 1319 ( les préfixes méga et micro s'annulent mutuellement ). Q = 180 divisé par 1319 = 0,136. Dans un circuit PARALLÈLE avec amortissement par résistance parallèle, le Facteur de Qualité égale résistance divisée par réactance: plus la résistance est élevée, moindre est l'effet sur la courbe de réponse. La résistance en parallèle réduit le Q du circuit résonant parallèle. Une résistance d'amortissement (en anglais, "damping resistor") peut servir à augmenter la bande passante.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quel est le facteur de qualité (Q) d'un circuit RLC parallèle quand la résonance = 14,225 MHz, L = 3,5 microhenrys et R = 10 kilohms?
Réactance inductive = 2 Pi f L = 2 fois 3,14 fois 14,225 fois 3,5 = 313 ( les préfixes méga et micro s'annulent mutuellement ). Q = 10 000 divisé par 313 = 31,9. Dans un circuit PARALLÈLE avec amortissement par résistance parallèle, le Facteur de Qualité égale résistance divisée par réactance: plus la résistance est élevée, moindre est l'effet sur la courbe de réponse. La résistance en parallèle réduit le Q du circuit résonant parallèle. Une résistance d'amortissement (en anglais, "damping resistor") peut servir à augmenter la bande passante.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quel est le facteur de qualité (Q) d'un circuit RLC parallèle quand la résonance = 7,125 MHz, L = 8,2 microhenrys et R = 1 kilohm?
Réactance inductive = 2 Pi f L = 2 fois 3,14 fois 7,125 fois 8,2 = 367 ( les préfixes méga et micro s'annulent mutuellement ). Q = 1000 divisé par 367 = 2,7. Dans un circuit PARALLÈLE avec amortissement par résistance parallèle, le Facteur de Qualité égale résistance divisée par réactance: plus la résistance est élevée, moindre est l'effet sur la courbe de réponse. La résistance en parallèle réduit le Q du circuit résonant parallèle. Une résistance d'amortissement (en anglais, "damping resistor") peut servir à augmenter la bande passante.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quel est le facteur de qualité (Q) d'un circuit RLC parallèle quand la résonance = 7,125 MHz, L = 10,1 microhenrys et R = 100 ohms?
Réactance inductive = 2 Pi f L = 2 fois 3,14 fois 7,125 fois 10,1 = 452 ( les préfixes méga et micro s'annulent mutuellement ). Q = 100 divisé par 452 = 0,22. Dans un circuit PARALLÈLE avec amortissement par résistance parallèle, le Facteur de Qualité égale résistance divisée par réactance: plus la résistance est élevée, moindre est l'effet sur la courbe de réponse. La résistance en parallèle réduit le Q du circuit résonant parallèle. Une résistance d'amortissement (en anglais, "damping resistor") peut servir à augmenter la bande passante.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quel est le facteur de qualité (Q) d'un circuit RLC parallèle quand la résonance = 7,125 MHz, L = 12,6 microhenrys et R = 22 kilohms?
Réactance inductive = 2 Pi f L = 2 fois 3,14 fois 7,125 fois 12,6 = 564 ( les préfixes méga et micro s'annulent mutuellement ). Q = 22 000 divisé par 564 = 39. Dans un circuit PARALLÈLE avec amortissement par résistance parallèle, le Facteur de Qualité égale résistance divisée par réactance: plus la résistance est élevée, moindre est l'effet sur la courbe de réponse. La résistance en parallèle réduit le Q du circuit résonant parallèle. Une résistance d'amortissement (en anglais, "damping resistor") peut servir à augmenter la bande passante.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quel est le facteur de qualité (Q) d'un circuit RLC parallèle quand la résonance = 3,625 MHz, L = 3 microhenrys et R = 2,2 kilohms?
Réactance inductive = 2 Pi f L = 2 fois 3,14 fois 3,625 fois 3 = 68 ( les préfixes méga et micro s'annulent mutuellement ). Q = 2200 divisé par 68 = 32,3. Dans un circuit PARALLÈLE avec amortissement par résistance parallèle, le Facteur de Qualité égale résistance divisée par réactance: plus la résistance est élevée, moindre est l'effet sur la courbe de réponse. La résistance en parallèle réduit le Q du circuit résonant parallèle. Une résistance d'amortissement (en anglais, "damping resistor") peut servir à augmenter la bande passante.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quel est le facteur de qualité (Q) d'un circuit RLC parallèle quand la résonance = 3,625 MHz, L = 42 microhenrys et R = 220 ohms?
Réactance inductive = 2 Pi f L = 2 fois 3,14 fois 3,625 fois 42 = 956 ( les préfixes méga et micro s'annulent mutuellement ). Q = 220 divisé par 956 = 0,23. Dans un circuit PARALLÈLE avec amortissement par résistance parallèle, le Facteur de Qualité égale résistance divisée par réactance: plus la résistance est élevée, moindre est l'effet sur la courbe de réponse. La résistance en parallèle réduit le Q du circuit résonant parallèle. Une résistance d'amortissement (en anglais, "damping resistor") peut servir à augmenter la bande passante.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quel est le facteur de qualité (Q) d'un circuit RLC parallèle quand la résonance = 3,625 MHz, L = 43 microhenrys et R = 1,8 kilohm?
Réactance inductive = 2 Pi f L = 2 fois 3,14 fois 3,625 fois 43 = 979 ( les préfixes méga et micro s'annulent mutuellement ). Q = 1800 divisé par 979 = 1,84. Dans un circuit PARALLÈLE avec amortissement par résistance parallèle, le Facteur de Qualité égale résistance divisée par réactance: plus la résistance est élevée, moindre est l'effet sur la courbe de réponse. La résistance en parallèle réduit le Q du circuit résonant parallèle. Une résistance d'amortissement (en anglais, "damping resistor") peut servir à augmenter la bande passante.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Pourquoi ajoute-t-on souvent une résistance dans un circuit résonant parallèle?
Une Résistance d'Amortissement (en anglais, "damping resistor") peut être placée aux bornes d'un circuit résonant parallèle ou en série avec un circuit résonant série pour abaisser le Q. Réduire le Facteur de Qualité a pour effet d'augmenter la bande passante ou largeur de bande.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Qu'est-ce qu'un filtre en treillis à quartz ("lattice filter")?
Le filtre en treillis à quartz a une largeur de bande étroite et des pentes d'atténuation dont les flancs sont abrupts. Le mot treillis réfère à un "entrecroisement de lattes formant claire-voie (Petit Robert)". L'écart en fréquence entre les cristaux choisis détermine la largeur de bande et la courbe de réponse. Le filtre en treillis à quartz (en anglais, "Crystal Lattice Filter") utilise deux paires appariées de cristaux en série et une autre paire appariée (en anglais, "matched") de cristaux de plus haute fréquence en parallèle dans un montage équilibré. Le filtre en demi-treillis à quartz (en anglais, "Half-Lattice Filter") utilise 2 cristaux dans un montage non équilibré.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quel facteur détermine la largeur de bande et la réponse d'un filtre en treillis à quartz ("lattice filter")?
Le filtre en treillis à quartz a une largeur de bande étroite et des pentes d'atténuation dont les flancs sont abrupts. Le mot treillis réfère à un "entrecroisement de lattes formant claire-voie (Petit Robert)". L'écart en fréquence entre les cristaux choisis détermine la largeur de bande et la courbe de réponse. Le filtre en treillis à quartz (en anglais, "Crystal Lattice Filter") utilise deux paires appariées de cristaux en série et une autre paire appariée (en anglais, "matched") de cristaux de plus haute fréquence en parallèle dans un montage équilibré. Le filtre en demi-treillis à quartz (en anglais, "Half-Lattice Filter") utilise 2 cristaux dans un montage non équilibré.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Pour une émission à bande latérale unique en phonie, que devrait être la largeur de bande d'un bon filtre en treillis à quartz ("lattice filter")?
La gamme de fréquences vocales utiles à la communication s'étend de 300 hertz à 3000 hertz, soit une largeur de bande de 2,7 kilohertz; 2,1 kHz est un bon compromis entre la fidélité et la sélectivité. 15 kilohertz est la largeur de bande en modulation de fréquence, 6 kilohertz est nécessaire à la modulation d'amplitude et 500 hertz est un filtre commun en télégraphie.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Un filtre à cristal de quartz est supérieur à un filtre LC dans les applications à bande passante étroite à cause :
Les cristaux piézo-électriques (quartz) se comportent comme des circuits résonants de "Q" extrêmement élevé (Facteur de Qualité au-delà de 25 000). Leur précision et leur stabilité sont exceptionnelles.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
La piézo-électricité est produite en :
La piézo-électricité a deux manifestations: l'application d'une force mécanique sur un cristal produit un champ électrique; soumettre un cristal à un champ électrique en change légèrement les dimensions physiques. Les cristaux peuvent résonner à une fréquence dite fondamentale selon leurs dimensions physiques ou à des fréquences proches de multiples impairs de la fondamentale ( 3 fois, 5 fois, 7 fois, etc., en anglais, des fréquences dites "overtone" ). Les cristaux sont utilisés dans les filtres à cause de leur facteur Q très élevé ou comme référence de fréquence précise, stable et de faible bruit.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Électriquement, à quoi ressemble un cristal?
Les cristaux piézo-électriques (quartz) se comportent comme des circuits résonants de "Q" extrêmement élevé (Facteur de Qualité au-delà de 25 000). Leur précision et leur stabilité sont exceptionnelles.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Les oscillateurs, filtres et microphones à cristal fonctionnent sur le principe :
L'effet piézo-électrique (production d'une charge électrique sous stress physique, déformation physique sous influence d'un champ électrique) trouve application dans les oscillateurs à quartz, les filtres à quartz ( par exemple, le filtre en treillis ) et les microphones à cristal. Le filtre actif fait appel à un composant actif, généralement un amplificateur opérationnel, et à des réseaux de résistances et condensateurs.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Les cristaux ne s'appliquent pas aux :
L'effet piézo-électrique (production d'une charge électrique sous stress physique, déformation physique sous influence d'un champ électrique) trouve application dans les oscillateurs à quartz, les filtres à quartz ( par exemple, le filtre en treillis ) et les microphones à cristal. Le filtre actif fait appel à un composant actif, généralement un amplificateur opérationnel, et à des réseaux de résistances et condensateurs.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quels sont les trois principaux groupes de filtres?
Il y a quatre groupes de filtres: passe-bas, passe-haut, passe-bande et coupe-bande. Hartley, Colpitts et Pierce sont des montages d'oscillateurs. Le mot 'Capacitif' ne décrit pas une gamme de fréquences comme les mots 'audio' et 'radio'. La résistance ne réagit pas à la fréquence.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Qu'est-ce qui distingue le filtre Butterworth?
Les filtres de type Butterworth sont caractérisés par une bande passante plutôt uniforme avec un minimum d'ondulation (c'est-à-dire gain ou perte quasi constants ) [création de l'ingénieur britannique Stephen Butterworth]. Les filtres de type Tchebychev [en l'honneur du mathématicien russe Pafnouti Tchebychev] ont des pentes d'atténuation plus abruptes au prix de plus d'ondulation (ou fluctuations) dans la courbe de réponse que les filtres Butterworth. Les filtres elliptiques, quant à eux, ont des réponses encore plus abruptes, c'est-à-dire des coupures plus raides. Aide mnémotechnique: "La réponse des filtres nommés en l'honneur du russe Tchebychev a des pentes abruptes et des ondulations comme les montagnes russes".
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quel type de filtre a des ondulations dans la bande passante et une pente abrupte?
Les filtres de type Butterworth sont caractérisés par une bande passante plutôt uniforme avec un minimum d'ondulation (c'est-à-dire gain ou perte quasi constants ) [création de l'ingénieur britannique Stephen Butterworth]. Les filtres de type Tchebychev [en l'honneur du mathématicien russe Pafnouti Tchebychev] ont des pentes d'atténuation plus abruptes au prix de plus d'ondulation (ou fluctuations) dans la courbe de réponse que les filtres Butterworth. Les filtres elliptiques, quant à eux, ont des réponses encore plus abruptes, c'est-à-dire des coupures plus raides. Aide mnémotechnique: "La réponse des filtres nommés en l'honneur du russe Tchebychev a des pentes abruptes et des ondulations comme les montagnes russes".
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Qu'est-ce qui distingue le filtre Tchebychev?
Les filtres de type Butterworth sont caractérisés par une bande passante plutôt uniforme avec un minimum d'ondulation (c'est-à-dire gain ou perte quasi constants ) [création de l'ingénieur britannique Stephen Butterworth]. Les filtres de type Tchebychev [en l'honneur du mathématicien russe Pafnouti Tchebychev] ont des pentes d'atténuation plus abruptes au prix de plus d'ondulation (ou fluctuations) dans la courbe de réponse que les filtres Butterworth. Les filtres elliptiques, quant à eux, ont des réponses encore plus abruptes, c'est-à-dire des coupures plus raides. Aide mnémotechnique: "La réponse des filtres nommés en l'honneur du russe Tchebychev a des pentes abruptes et des ondulations comme les montagnes russes".
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Les radioamateurs utilisent des cavités résonantes comme :
La cavité résonante quart de longueur d'onde se comporte comme un filtre de facteur Q très élevé (environ 3000). À cause de leurs dimensions physiques, elles sont praticables en VHF et plus: à 50 MHz (6 m), la cavité aura une longueur de 1,5 m ( un quart de longueur d'onde ).
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
En VHF et aux fréquences plus élevées, on utilise des cavités d'un quart de longueur d'onde pour protéger le récepteur contre les signaux de niveau élevé. Pour une fréquence de 50 MHz environ, le diamètre d'une telle cavité serait d'environ 10 cm (4 pouces). Quelle en serait la longueur approximative?
La cavité résonante quart de longueur d'onde se comporte comme un filtre de facteur Q très élevé (environ 3000). À cause de leurs dimensions physiques, elles sont praticables en VHF et plus: à 50 MHz (6 m), la cavité aura une longueur de 1,5 m ( un quart de longueur d'onde ).
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Pour un récepteur VHF et aux fréquences plus élevées, on peut installer, à l'étage d'entrée RF, un dispositif qui empêche la surcharge du récepteur et la réception de signaux non désirés. On l'appelle :
Le résonateur hélicoïdal, en fait un segment de ligne de transmission bobinée sous forme hélicoïdale (comme le pas d'une vis) à l'intérieur d'un blindage, fait office de cavité résonante de dimensions réduites.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Aux fréquences VHF et supérieures, lorsque vous devez utiliser une largeur de bande presque égale à celle d'un canal de télévision, un bon choix de filtre serait :
La largeur de bande d'un canal de télévision est de quelque 6 mégahertz, soit beaucoup plus large que les trois types de filtres de cette liste.
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quel est le principal avantage du filtre Butterworth comparé au filtre Tchebychev?
Les filtres de type Butterworth sont caractérisés par une bande passante plutôt uniforme avec un minimum d'ondulation (c'est-à-dire gain ou perte quasi constants ) [création de l'ingénieur britannique Stephen Butterworth]. Les filtres de type Tchebychev [en l'honneur du mathématicien russe Pafnouti Tchebychev] ont des pentes d'atténuation plus abruptes au prix de plus d'ondulation (ou fluctuations) dans la courbe de réponse que les filtres Butterworth. Les filtres elliptiques, quant à eux, ont des réponses encore plus abruptes, c'est-à-dire des coupures plus raides. Aide mnémotechnique: "La réponse des filtres nommés en l'honneur du russe Tchebychev a des pentes abruptes et des ondulations comme les montagnes russes".
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Quel est le principal avantage du filtre Tchebychev comparé au filtre Butterworth?
Les filtres de type Butterworth sont caractérisés par une bande passante plutôt uniforme avec un minimum d'ondulation (c'est-à-dire gain ou perte quasi constants ) [création de l'ingénieur britannique Stephen Butterworth]. Les filtres de type Tchebychev [en l'honneur du mathématicien russe Pafnouti Tchebychev] ont des pentes d'atténuation plus abruptes au prix de plus d'ondulation (ou fluctuations) dans la courbe de réponse que les filtres Butterworth. Les filtres elliptiques, quant à eux, ont des réponses encore plus abruptes, c'est-à-dire des coupures plus raides. Aide mnémotechnique: "La réponse des filtres nommés en l'honneur du russe Tchebychev a des pentes abruptes et des ondulations comme les montagnes russes".
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none
Il n'est pas souhaitable d'utiliser un des filtres suivants aux fréquences audio et aux basses fréquences radio. Lequel?
La cavité résonante quart de longueur d'onde se comporte comme un filtre de facteur Q très élevé (environ 3000). À cause de leurs dimensions physiques, elles sont praticables en VHF et plus: à 50 MHz (6 m), la cavité aura une longueur de 1,5 m ( un quart de longueur d'onde ).
Droit d'auteur original; explications transcrites avec l'autorisation de François VE2AAY, auteur du simulateur d'examen ExHAMiner. Ne pas copier sans son autorisation.
Tags: none